Tag Archives: gear machinery

China Professional Spur Gear Drive Shaft on Light Industry Equipment or Mining Machinery

Product Description

Product Description

Our Gear types: Straight Teeth Gear, sprocket, Oblique Teeth Cylinder Gear, External Spur Gear, Internal Spur Gear, Gear Shaft etc the standard and non standard according to the drawings or samples.
Material: 45#, 40Cr, 20CrMo, 20CrMoti, 17CrNiMo6, 20CrMnTi or the others
Heat treatment: Medium frequency quenching, high frequency quenching, carburizing and quenching, nitriding, Carbon-Nitriding, Salt bath quenching.
Working Process: Gearh hobbing, Gear shaving, Gear shaping, Gear grinding etc
Precision Grade: GB5-8, JIS 1-4, AGMA 12-9, DIN 6-9
Application area: Auto gearbox, medical equipment, metallurgical machinery, port machinery, lifting equipment, mining machinery, electrical power equipment, light industry equipment, environmental protection machinery.
 

Detailed Photos

Product Parameters

Take the example of our sprocket or chainwheel
The standard and non standard according to the drawings or samples.
Material: C45, S235JR, CAST STEEL or the others
1, Description: Sprocket, chainwheel
2, Types:
A) Standard sprocket
B) Finished bore sprocket
C) Taper bore sprocket
D) Double plate wheels
E) conveyor sprocket
3, Material: C45, S235JR, Nylon
4, Surface treatment: Zinc-plated, black finish
5, Single A-type, double A-type, Welding hub KB-type, Welding hub C-type etc for your reference.
6. Process: Forging( casting)—lathe- teeth shaping—finishing—oil washing—Packing, made by CNC machine
7. Inspection: All items are checked and tested thoroughly during every working procedure and after the product is finally manufactured to ensure that the best quality product enter into the market.

Packaging & Shipping

Our Advantages

 

After Sales Service

Our Core range of spur gears, industry sprocket, and roller chains are specifically designed to be interchangeable and versatile, this helps us keep lower stock levels while achieving the customization necessary for so many applications. The core offer has also enabled us to offer excellent pricing levels for low quantities, often prototypes are very expensive due to lack of economies of scale we have tried to help with this as much as possible. HangZhou CZPT can offer bespoke units for larger quantities and offer a Supply Chain service where we work closely with our customers to identify the optimal delivery schedule in accordance with OEM production levels. If you are looking for spur gear, drive shafts, industry sprocket etc, you have come to the right place, our expert technical sales staff will recommend the best possible option for both your application and your pocket. Contact us now to discuss your application.
HangZhou CZPT TRADE CO., LTD is responsible for exporting the above products, and we also import some important products from oversea markets.
Our company has got the right of import and export from the Government department.
It is necessary to get your specific requirement when contacting us,
for example of gear, number of teeth, module, pitch diameter, inner hole diameter, thickness, outside drawing etc. and then we will give the accurate offers.
Therefore, hope to get your feedback soon.

Please watch our process steps as below
(1) process these output shafts

(2)process these spur gears and sprockets

(3) turning machining

(4) assembly preparation

(5) fine process workshop

 

CHOOSE US FOR:
1. We offer engineer suggestion to your specified design in production improvement and cost saving.
2. R&D and QC department focus on the products to meet your strict requirements.
3. Different surface treatments available, plating, power coating, painting, anodized,polishing, electrophoresis, etc.
4. Different dimensions according to buyer’s request.
5. Various packagings according to specific requirements.
6. Customized and tailored orders are welcome.
7. Good quality and Quick action.
8. Our products have been exported to America, Australia,German,Korea,Indian.

CONFIDENTIAL POLICY:
1) The appointed products are only for you.
2) Your informations&documents are confidential.
3) Your drawings&sketch are confidential.

FAQ

Question:
1.Q:How about mould cost?
A: primarily depend on : 1.Drawing, 2.material, 3.weight and quantity.
We need to know the structure of each parts to analyze the mold solution by:

1) –Complete design drawing or actual sample —– the best way
–PDF drawing with complete dimension for each parts
–Clearly photos for each parts with more angle-views to show every features.

2)The materials and surface treatments.

3)The quantity of order.

2.Q:How to control the product processing?
A: The processing report or pictures will be sent to the customer every week/ each month for review.

3.Q:Who will own the mould?
A:Customer, also the mould can be kept in our factory for future order.

4.Q:How long do you make your quotation?
A:After receiving detail informations we will quote in 1 to 3 days.

5.Q: Are the samples/prototype free of charge?

A: charged,but it will be returned to buyer when an order confirmed and order quantity is over 5000 pcs.
After your drawing confirmed and charges done for the prototype, we will produce a sample
by CNC machining. And the first trial samples (1-3pcs) will be shipped to buyer
by the DHL /Fedex at buyer’s express account or prepay the express charges.

MOQ? — 200units and accept sample order.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery, Industry
Hardness: Hardened
Gear Position: External Gear
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Spur Gear
Material: Alloy Steel
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

How do drive shafts handle variations in speed and torque during operation?

Drive shafts are designed to handle variations in speed and torque during operation by employing specific mechanisms and configurations. These mechanisms allow the drive shafts to accommodate the changing demands of power transmission while maintaining smooth and efficient operation. Here’s a detailed explanation of how drive shafts handle variations in speed and torque:

1. Flexible Couplings:

Drive shafts often incorporate flexible couplings, such as universal joints (U-joints) or constant velocity (CV) joints, to handle variations in speed and torque. These couplings provide flexibility and allow the drive shaft to transmit power even when the driving and driven components are not perfectly aligned. U-joints consist of two yokes connected by a cross-shaped bearing, allowing for angular movement between the drive shaft sections. This flexibility accommodates variations in speed and torque and compensates for misalignment. CV joints, which are commonly used in automotive drive shafts, maintain a constant velocity of rotation while accommodating changing operating angles. These flexible couplings enable smooth power transmission and reduce vibrations and wear caused by speed and torque variations.

2. Slip Joints:

In some drive shaft designs, slip joints are incorporated to handle variations in length and accommodate changes in distance between the driving and driven components. A slip joint consists of an inner and outer tubular section with splines or a telescoping mechanism. As the drive shaft experiences changes in length due to suspension movement or other factors, the slip joint allows the shaft to extend or compress without affecting the power transmission. By allowing axial movement, slip joints help prevent binding or excessive stress on the drive shaft during variations in speed and torque, ensuring smooth operation.

3. Balancing:

Drive shafts undergo balancing procedures to optimize their performance and minimize vibrations caused by speed and torque variations. Imbalances in the drive shaft can lead to vibrations, which not only affect the comfort of vehicle occupants but also increase wear and tear on the shaft and its associated components. Balancing involves redistributing mass along the drive shaft to achieve even weight distribution, reducing vibrations and improving overall performance. Dynamic balancing, which typically involves adding or removing small weights, ensures that the drive shaft operates smoothly even under varying speeds and torque loads.

4. Material Selection and Design:

The selection of materials and the design of drive shafts play a crucial role in handling variations in speed and torque. Drive shafts are typically made from high-strength materials, such as steel or aluminum alloys, chosen for their ability to withstand the forces and stresses associated with varying operating conditions. The diameter and wall thickness of the drive shaft are also carefully determined to ensure sufficient strength and stiffness. Additionally, the design incorporates considerations for factors such as critical speed, torsional rigidity, and resonance avoidance, which help maintain stability and performance during speed and torque variations.

5. Lubrication:

Proper lubrication is essential for drive shafts to handle variations in speed and torque. Lubricating the joints, such as U-joints or CV joints, reduces friction and heat generated during operation, ensuring smooth movement and minimizing wear. Adequate lubrication also helps prevent the binding of components, allowing the drive shaft to accommodate speed and torque variations more effectively. Regular lubrication maintenance is necessary to ensure optimal performance and extend the lifespan of the drive shaft.

6. System Monitoring:

Monitoring the performance of the drive shaft system is important to identify any issues related to variations in speed and torque. Unusual vibrations, noises, or changes in power transmission can indicate potential problems with the drive shaft. Regular inspections and maintenance checks allow for the early detection and resolution of issues, helping to prevent further damage and ensure the drive shaft continues to handle speed and torque variations effectively.

In summary, drive shafts handle variations in speed and torque during operation through the use of flexible couplings, slip joints, balancing procedures, appropriate material selection and design, lubrication, and system monitoring. These mechanisms and practices allow the drive shaft to accommodate misalignment, changes in length, and variations in power demands, ensuring efficient power transmission, smooth operation, and reduced wear and tear in various applications.

pto shaft

How do drive shafts enhance the performance of automobiles and trucks?

Drive shafts play a significant role in enhancing the performance of automobiles and trucks. They contribute to various aspects of vehicle performance, including power delivery, traction, handling, and overall efficiency. Here’s a detailed explanation of how drive shafts enhance the performance of automobiles and trucks:

1. Power Delivery: Drive shafts are responsible for transmitting power from the engine to the wheels, enabling the vehicle to move forward. By efficiently transferring power without significant losses, drive shafts ensure that the engine’s power is effectively utilized, resulting in improved acceleration and overall performance. Well-designed drive shafts with minimal power loss contribute to the vehicle’s ability to deliver power to the wheels efficiently.

2. Torque Transfer: Drive shafts facilitate the transfer of torque from the engine to the wheels. Torque is the rotational force that drives the vehicle forward. High-quality drive shafts with proper torque conversion capabilities ensure that the torque generated by the engine is effectively transmitted to the wheels. This enhances the vehicle’s ability to accelerate quickly, tow heavy loads, and climb steep gradients, thereby improving overall performance.

3. Traction and Stability: Drive shafts contribute to the traction and stability of automobiles and trucks. They transmit power to the wheels, allowing them to exert force on the road surface. This enables the vehicle to maintain traction, especially during acceleration or when driving on slippery or uneven terrain. The efficient power delivery through the drive shafts enhances the vehicle’s stability by ensuring balanced power distribution to all wheels, improving control and handling.

4. Handling and Maneuverability: Drive shafts have an impact on the handling and maneuverability of vehicles. They help establish a direct connection between the engine and the wheels, allowing for precise control and responsive handling. Well-designed drive shafts with minimal play or backlash contribute to a more direct and immediate response to driver inputs, enhancing the vehicle’s agility and maneuverability.

5. Weight Reduction: Drive shafts can contribute to weight reduction in automobiles and trucks. Lightweight drive shafts made from materials such as aluminum or carbon fiber-reinforced composites reduce the overall weight of the vehicle. The reduced weight improves the power-to-weight ratio, resulting in better acceleration, handling, and fuel efficiency. Additionally, lightweight drive shafts reduce the rotational mass, allowing the engine to rev up more quickly, further enhancing performance.

6. Mechanical Efficiency: Efficient drive shafts minimize energy losses during power transmission. By incorporating features such as high-quality bearings, low-friction seals, and optimized lubrication, drive shafts reduce friction and minimize power losses due to internal resistance. This enhances the mechanical efficiency of the drivetrain system, allowing more power to reach the wheels and improving overall vehicle performance.

7. Performance Upgrades: Drive shaft upgrades can be popular performance enhancements for enthusiasts. Upgraded drive shafts, such as those made from stronger materials or with enhanced torque capacity, can handle higher power outputs from modified engines. These upgrades allow for increased performance, such as improved acceleration, higher top speeds, and better overall driving dynamics.

8. Compatibility with Performance Modifications: Performance modifications, such as engine upgrades, increased power output, or changes to the drivetrain system, often require compatible drive shafts. Drive shafts designed to handle higher torque loads or adapt to modified drivetrain configurations ensure optimal performance and reliability. They enable the vehicle to effectively harness the increased power and torque, resulting in improved performance and responsiveness.

9. Durability and Reliability: Robust and well-maintained drive shafts contribute to the durability and reliability of automobiles and trucks. They are designed to withstand the stresses and loads associated with power transmission. High-quality materials, appropriate balancing, and regular maintenance help ensure that drive shafts operate smoothly, minimizing the risk of failures or performance issues. Reliable drive shafts enhance the overall performance by providing consistent power delivery and minimizing downtime.

10. Compatibility with Advanced Technologies: Drive shafts are evolving in tandem with advancements in vehicle technologies. They are increasingly being integrated with advanced systems such as hybrid powertrains, electric motors, and regenerative braking. Drive shafts designed to work seamlessly with these technologies maximize their efficiency and performance benefits, contributing to improved overall vehicle performance.

In summary, drive shafts enhance the performance of automobiles and trucks by optimizing power delivery, facilitating torque transfer, improving traction and stability, enhancing handling and maneuverability, reducing weight, increasing mechanical efficiency, enabling compatibility with performance upgrades and advanced technologies, and ensuring durability and reliability. They play a crucial role in ensuring efficient power transmission, responsive acceleration, precise handling, and overall improved performance of vehicles.

pto shaft

What is a drive shaft and how does it function in vehicles and machinery?

A drive shaft, also known as a propeller shaft or prop shaft, is a mechanical component that plays a critical role in transmitting rotational power from the engine to the wheels or other driven components in vehicles and machinery. It is commonly used in various types of vehicles, including cars, trucks, motorcycles, and agricultural or industrial machinery. Here’s a detailed explanation of what a drive shaft is and how it functions:

1. Definition and Construction: A drive shaft is a cylindrical metal tube that connects the engine or power source to the wheels or driven components. It is typically made of steel or aluminum and consists of one or more tubular sections with universal joints (U-joints) at each end. These U-joints allow for angular movement and compensation of misalignment between the engine/transmission and the driven wheels or components.

2. Power Transmission: The primary function of a drive shaft is to transmit rotational power from the engine or power source to the wheels or driven components. In vehicles, the drive shaft connects the transmission or gearbox output shaft to the differential, which then transfers power to the wheels. In machinery, the drive shaft transfers power from the engine or motor to various driven components such as pumps, generators, or other mechanical systems.

3. Torque and Speed: The drive shaft is responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). The drive shaft must be capable of transmitting the required torque without excessive twisting or bending and maintaining the desired rotational speed for efficient operation of the driven components.

4. Flexible Coupling: The U-joints on the drive shaft provide a flexible coupling that allows for angular movement and compensation of misalignment between the engine/transmission and the driven wheels or components. As the suspension system of a vehicle moves or the machinery operates on uneven terrain, the drive shaft can adjust its length and angle to accommodate these movements, ensuring smooth power transmission and preventing damage to the drivetrain components.

5. Length and Balance: The length of the drive shaft is determined by the distance between the engine or power source and the driven wheels or components. It should be appropriately sized to ensure proper power transmission and avoid excessive vibrations or bending. Additionally, the drive shaft is carefully balanced to minimize vibrations and rotational imbalances, which can cause discomfort, reduce efficiency, and lead to premature wear of drivetrain components.

6. Safety Considerations: Drive shafts in vehicles and machinery require proper safety measures. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts and reduce the risk of injury in the event of a malfunction or failure. Additionally, safety shields or guards are commonly installed around exposed drive shafts in machinery to protect operators from potential hazards associated with rotating components.

7. Maintenance and Inspection: Regular maintenance and inspection of drive shafts are essential to ensure their proper functioning and longevity. This includes checking for signs of wear, damage, or excessive play in the U-joints, inspecting the drive shaft for any cracks or deformations, and lubricating the U-joints as recommended by the manufacturer. Proper maintenance helps prevent failures, ensures optimal performance, and prolongs the service life of the drive shaft.

In summary, a drive shaft is a mechanical component that transmits rotational power from the engine or power source to the wheels or driven components in vehicles and machinery. It functions by providing a rigid connection between the engine/transmission and the driven wheels or components, while also allowing for angular movement and compensation of misalignment through the use of U-joints. The drive shaft plays a crucial role in power transmission, torque and speed delivery, flexible coupling, length and balance considerations, safety, and maintenance requirements. Its proper functioning is essential for the smooth and efficient operation of vehicles and machinery.

China Professional Spur Gear Drive Shaft on Light Industry Equipment or Mining Machinery  China Professional Spur Gear Drive Shaft on Light Industry Equipment or Mining Machinery
editor by CX 2024-02-14

China Good quality Machinery Parts Rotor Gear Shaft Customized Machining Knurling High Precision with Factory Price for Auto Drive Factory Price

Product Description

You can kindly find the specification details below:

HangZhou Mastery Machinery Technology Co., LTD helps manufacturers and brands fulfill their machinery parts by precision manufacturing. High precision machinery products like the shaft, worm screw, bushing, couplings, joints……Our products are used widely in electronic motors, the main shaft of the engine, the transmission shaft in the gearbox, couplers, printers, pumps, drones, and so on. They cater to different industries, including automotive, industrial, power tools, garden tools, healthcare, smart home, etc.

Mastery caters to the industrial industry by offering high-level Cardan shafts, pump shafts, and a bushing that come in different sizes ranging from diameter 3mm-50mm. Our products are specifically formulated for transmissions, robots, gearboxes, industrial fans, and drones, etc.

Mastery factory currently has more than 100 main production equipment such as CNC lathe, CNC machining center, CAM Automatic Lathe, grinding machine, hobbing machine, etc. The production capacity can be up to 5-micron mechanical tolerance accuracy, automatic wiring machine processing range covering 3mm-50mm diameter bar.

Key Specifications:

Name Shaft/Motor Shaft/Drive Shaft/Gear Shaft/Pump Shaft/Worm Screw/Worm Gear/Bushing/Ring/Joint/Pin
Material 40Cr/35C/GB45/70Cr/40CrMo
Process Machining/Lathing/Milling/Drilling/Grinding/Polishing
Size 2-400mm(Customized)
Diameter φ12(Customized)
Diameter Tolerance 0.008mm
Roundness 0.01mm
Roughness Ra0.4
Straightness 0.01mm
Hardness Customized
Length 32mm(Customized)
Heat Treatment Customized
Surface treatment Coating/Ni plating/Zn plating/QPQ/Carbonization/Quenching/Black Treatment/Steaming Treatment/Nitrocarburizing/Carbonitriding

Quality Management:

  • Raw Material Quality Control: Chemical Composition Analysis, Mechanical Performance Test, ROHS, and Mechanical Dimension Check
  • Production Process Quality Control: Full-size inspection for the 1st part, Critical size process inspection, SPC process monitoring
  • Lab ability: CMM, OGP, XRF, Roughness meter, Profiler, Automatic optical inspector
  • Quality system: ISO9001, IATF 16949, ISO14001
  • Eco-Friendly: ROHS, Reach.

Packaging and Shipping:  

Throughout the entire process of our supply chain management, consistent on-time delivery is vital and very important for the success of our business.

Mastery utilizes several different shipping methods that are detailed below:

For Samples/Small Q’ty: By Express Services or Air Fright.

For Formal Order: By Sea or by air according to your requirement.

 

Mastery Services:

  • One-Stop solution from idea to product/ODM&OEM acceptable
  • Individual research and sourcing/purchasing tasks
  • Individual supplier management/development, on-site quality check projects
  • Muti-varieties/small batch/customization/trial orders are acceptable
  • Flexibility on quantity/Quick samples
  • Forecast and raw material preparation in advance are negotiable
  • Quick quotes and quick responses

General Parameters:

If you are looking for a reliable machinery product partner, you can rely on Mastery. Work with us and let us help you grow your business using our customizable and affordable products.

Material: Carbon Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Real Axis
Customization:
Available

|

Customized Request

pto shaft

What maintenance practices are crucial for prolonging the lifespan of drive shafts?

To prolong the lifespan of drive shafts and ensure their optimal performance, several maintenance practices are crucial. Regular maintenance helps identify and address potential issues before they escalate, reduces wear and tear, and ensures the drive shaft operates smoothly and efficiently. Here are some essential maintenance practices for prolonging the lifespan of drive shafts:

1. Regular Inspection:

Performing regular inspections is vital for detecting any signs of wear, damage, or misalignment. Inspect the drive shaft visually, looking for cracks, dents, or any signs of excessive wear on the shaft itself and its associated components such as joints, yokes, and splines. Check for any signs of lubrication leaks or contamination. Additionally, inspect the fasteners and mounting points to ensure they are secure. Early detection of any issues allows for timely repairs or replacements, preventing further damage to the drive shaft.

2. Lubrication:

Proper lubrication is essential for the smooth operation and longevity of drive shafts. Lubricate the joints, such as universal joints or constant velocity joints, as recommended by the manufacturer. Lubrication reduces friction, minimizes wear, and helps dissipate heat generated during operation. Use the appropriate lubricant specified for the specific drive shaft and application, considering factors such as temperature, load, and operating conditions. Regularly check the lubrication levels and replenish as necessary to ensure optimal performance and prevent premature failure.

3. Balancing and Alignment:

Maintaining proper balancing and alignment is crucial for the lifespan of drive shafts. Imbalances or misalignments can lead to vibrations, accelerated wear, and potential failure. If vibrations or unusual noises are detected during operation, it is important to address them promptly. Perform balancing procedures as necessary, including dynamic balancing, to ensure even weight distribution along the drive shaft. Additionally, verify that the drive shaft is correctly aligned with the engine or power source and the driven components. Misalignment can cause excessive stress on the drive shaft, leading to premature failure.

4. Protective Coatings:

Applying protective coatings can help prolong the lifespan of drive shafts, particularly in applications exposed to harsh environments or corrosive substances. Consider using coatings such as zinc plating, powder coating, or specialized corrosion-resistant coatings to enhance the drive shaft’s resistance to corrosion, rust, and chemical damage. Regularly inspect the coating for any signs of degradation or damage, and reapply or repair as necessary to maintain the protective barrier.

5. Torque and Fastener Checks:

Ensure that the drive shaft’s fasteners, such as bolts, nuts, or clamps, are properly torqued and secured according to the manufacturer’s specifications. Loose or improperly tightened fasteners can lead to excessive vibrations, misalignment, or even detachment of the drive shaft. Periodically check and retighten the fasteners as recommended or after any maintenance or repair procedures. Additionally, monitor the torque levels during operation to ensure they remain within the specified range, as excessive torque can strain the drive shaft and lead to premature failure.

6. Environmental Protection:

Protecting the drive shaft from environmental factors can significantly extend its lifespan. In applications exposed to extreme temperatures, moisture, chemicals, or abrasive substances, take appropriate measures to shield the drive shaft. This may include using protective covers, seals, or guards to prevent contaminants from entering and causing damage. Regular cleaning of the drive shaft, especially in dirty or corrosive environments, can also help remove debris and prevent buildup that could compromise its performance and longevity.

7. Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance practices specific to the drive shaft model and application. The manufacturer’s instructions may include specific intervals for inspections, lubrication, balancing, or other maintenance tasks. Adhering to these guidelines ensures that the drive shaft is properly maintained and serviced, maximizing its lifespan and minimizing the risk of unexpected failures.

By implementing these maintenance practices, drive shafts can operate reliably, maintain efficient power transmission, and have an extended service life, ultimately reducing downtime and ensuring optimal performance in various applications.

pto shaft

How do drive shafts enhance the performance of automobiles and trucks?

Drive shafts play a significant role in enhancing the performance of automobiles and trucks. They contribute to various aspects of vehicle performance, including power delivery, traction, handling, and overall efficiency. Here’s a detailed explanation of how drive shafts enhance the performance of automobiles and trucks:

1. Power Delivery:

Drive shafts are responsible for transferring power from the engine to the wheels, enabling the vehicle to move forward. By efficiently transmitting power without significant losses, drive shafts ensure that the engine’s power is effectively utilized, resulting in improved acceleration and overall performance. Well-designed drive shafts with minimal power loss contribute to the vehicle’s ability to deliver power to the wheels efficiently.

2. Torque Transfer:

Drive shafts facilitate the transfer of torque from the engine to the wheels. Torque is the rotational force that drives the vehicle forward. High-quality drive shafts with proper torque conversion capabilities ensure that the torque generated by the engine is effectively transmitted to the wheels. This enhances the vehicle’s ability to accelerate quickly, tow heavy loads, and climb steep gradients, thereby improving overall performance.

3. Traction and Stability:

Drive shafts contribute to the traction and stability of automobiles and trucks. They transmit power to the wheels, allowing them to exert force on the road surface. This enables the vehicle to maintain traction, especially during acceleration or when driving on slippery or uneven terrain. The efficient power delivery through the drive shafts enhances the vehicle’s stability by ensuring balanced power distribution to all wheels, improving control and handling.

4. Handling and Maneuverability:

Drive shafts have an impact on the handling and maneuverability of vehicles. They help establish a direct connection between the engine and the wheels, allowing for precise control and responsive handling. Well-designed drive shafts with minimal play or backlash contribute to a more direct and immediate response to driver inputs, enhancing the vehicle’s agility and maneuverability.

5. Weight Reduction:

Drive shafts can contribute to weight reduction in automobiles and trucks. Lightweight drive shafts made from materials such as aluminum or carbon fiber-reinforced composites reduce the overall weight of the vehicle. The reduced weight improves the power-to-weight ratio, resulting in better acceleration, handling, and fuel efficiency. Additionally, lightweight drive shafts reduce the rotational mass, allowing the engine to rev up more quickly, further enhancing performance.

6. Mechanical Efficiency:

Efficient drive shafts minimize energy losses during power transmission. By incorporating features such as high-quality bearings, low-friction seals, and optimized lubrication, drive shafts reduce friction and minimize power losses due to internal resistance. This enhances the mechanical efficiency of the drivetrain system, allowing more power to reach the wheels and improving overall vehicle performance.

7. Performance Upgrades:

Drive shaft upgrades can be a popular performance enhancement for enthusiasts. Upgraded drive shafts, such as those made from stronger materials or with enhanced torque capacity, can handle higher power outputs from modified engines. These upgrades allow for increased performance, such as improved acceleration, higher top speeds, and better overall driving dynamics.

8. Compatibility with Performance Modifications:

Performance modifications, such as engine upgrades, increased power output, or changes to the drivetrain system, often require compatible drive shafts. Drive shafts designed to handle higher torque loads or adapt to modified drivetrain configurations ensure optimal performance and reliability. They enable the vehicle to effectively harness the increased power and torque, resulting in improved performance and responsiveness.

9. Durability and Reliability:

Robust and well-maintained drive shafts contribute to the durability and reliability of automobiles and trucks. They are designed to withstand the stresses and loads associated with power transmission. High-quality materials, appropriate balancing, and regular maintenance help ensure that drive shafts operate smoothly, minimizing the risk of failures or performance issues. Reliable drive shafts enhance the overall performance by providing consistent power delivery and minimizing downtime.

10. Compatibility with Advanced Technologies:

Drive shafts are evolving in tandem with advancements in vehicle technologies. They are increasingly being integrated with advanced systems such as hybrid powertrains, electric motors, and regenerative braking. Drive shafts designed to work seamlessly with these technologies maximize their efficiency and performance benefits, contributing to improved overall vehicle performance.

In summary, drive shafts enhance the performance of automobiles and trucks by optimizing power delivery, facilitating torque transfer, improving traction and stability, enhancing handling and maneuverability, reducing weight, increasing mechanical efficiency,and enabling compatibility with performance upgrades and advanced technologies. They play a crucial role in ensuring efficient power transmission, responsive acceleration, precise handling, and overall improved performance of vehicles.pto shaft

What is a drive shaft and how does it function in vehicles and machinery?

A drive shaft, also known as a propeller shaft or prop shaft, is a mechanical component that plays a critical role in transmitting rotational power from the engine to the wheels or other driven components in vehicles and machinery. It is commonly used in various types of vehicles, including cars, trucks, motorcycles, and agricultural or industrial machinery. Here’s a detailed explanation of what a drive shaft is and how it functions:

1. Definition and Construction: A drive shaft is a cylindrical metal tube that connects the engine or power source to the wheels or driven components. It is typically made of steel or aluminum and consists of one or more tubular sections with universal joints (U-joints) at each end. These U-joints allow for angular movement and compensation of misalignment between the engine/transmission and the driven wheels or components.

2. Power Transmission: The primary function of a drive shaft is to transmit rotational power from the engine or power source to the wheels or driven components. In vehicles, the drive shaft connects the transmission or gearbox output shaft to the differential, which then transfers power to the wheels. In machinery, the drive shaft transfers power from the engine or motor to various driven components such as pumps, generators, or other mechanical systems.

3. Torque and Speed: The drive shaft is responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). The drive shaft must be capable of transmitting the required torque without excessive twisting or bending and maintaining the desired rotational speed for efficient operation of the driven components.

4. Flexible Coupling: The U-joints on the drive shaft provide a flexible coupling that allows for angular movement and compensation of misalignment between the engine/transmission and the driven wheels or components. As the suspension system of a vehicle moves or the machinery operates on uneven terrain, the drive shaft can adjust its length and angle to accommodate these movements, ensuring smooth power transmission and preventing damage to the drivetrain components.

5. Length and Balance: The length of the drive shaft is determined by the distance between the engine or power source and the driven wheels or components. It should be appropriately sized to ensure proper power transmission and avoid excessive vibrations or bending. Additionally, the drive shaft is carefully balanced to minimize vibrations and rotational imbalances, which can cause discomfort, reduce efficiency, and lead to premature wear of drivetrain components.

6. Safety Considerations: Drive shafts in vehicles and machinery require proper safety measures. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts and reduce the risk of injury in the event of a malfunction or failure. Additionally, safety shields or guards are commonly installed around exposed drive shafts in machinery to protect operators from potential hazards associated with rotating components.

7. Maintenance and Inspection: Regular maintenance and inspection of drive shafts are essential to ensure their proper functioning and longevity. This includes checking for signs of wear, damage, or excessive play in the U-joints, inspecting the drive shaft for any cracks or deformations, and lubricating the U-joints as recommended by the manufacturer. Proper maintenance helps prevent failures, ensures optimal performance, and prolongs the service life of the drive shaft.

In summary, a drive shaft is a mechanical component that transmits rotational power from the engine or power source to the wheels or driven components in vehicles and machinery. It functions by providing a rigid connection between the engine/transmission and the driven wheels or components, while also allowing for angular movement and compensation of misalignment through the use of U-joints. The drive shaft plays a crucial role in power transmission, torque and speed delivery, flexible coupling, length and balance considerations, safety, and maintenance requirements. Its proper functioning is essential for the smooth and efficient operation of vehicles and machinery.

China Good quality Machinery Parts Rotor Gear Shaft Customized Machining Knurling High Precision with Factory Price for Auto Drive Factory Price  China Good quality Machinery Parts Rotor Gear Shaft Customized Machining Knurling High Precision with Factory Price for Auto Drive Factory Price
editor by CX 2023-11-09

China QJ904.31.114 Inner Gear For Foton Lovol agricultural machinery & equipment Farm Tractors custom drive shaft

Condition: New
Guarantee: 3 months
Relevant Industries: Equipment Mend Shops, Farms
Weight (KG): 3 KG
Showroom Place: None
Video clip outgoing-inspection: Not Available
Equipment Take a look at Report: Not Available
Advertising and marketing Type: New Product 2571
Sort: Shafts
Use: Tractors
Following Guarantee Service: Spare areas
Packaging Particulars: opp
Port: HangZhou

Specification

itemInner Equipment
ConditionNew
Place of OriginChina,ZheJiang
Package measurement(CM)10*10*ten
Gross weight(KG)2
Suggest Items Company Profile Certifications Packing & Delivery FAQ 1. who are we?We are based in ZheJiang , China, start off from 2018,sell to Africa(40.00%),South Asia(twenty.00%),Japanese Asia(20.00%),Eastern Europe(10.00%),North America(ten.00%). There are overall about 5-ten individuals in our place of work.2. how can we guarantee quality?Always a pre-creation sample ahead of mass productionAlways final Inspection ahead of cargo Air Compressor CZPT G2P G2FF G2FF G3P G3FF G3FF G4P G4FF AtlasCopco G4FF G5P G5FF G5FF TM FM CZPT Air Compressor 3.what can you get from us?Lovol tractor elements,Quanchai components,Foton tractor element,Weichai areas,tractor engine parts4. why need to you purchase from us not from other suppliers?Our organization is engaged in CZPT tractor elements, with much more than ten several years of services knowledge at home and overseas, with great professional expertise and enough inventory.5. what solutions can we provide?Approved Supply Conditions: FOB,CFR,CIF,EXW,Convey Delivery;Accepted Payment Currency:USD, Japan Top quality Differente Design Motorcycle Chain and Sprocket Kits EUR,HKD,CNYAccepted Payment Variety: T/T,L/C,D/P D/A,MoneyGram,Credit rating Card,PayPal,Western Union,Income,Escrow UAE market place 380v 50hz 20HP eighty cfm air cooling immediately travel screw air compressor for fiber laser machine Language Spoken:English,Chinese

Drive shaft type

The driveshaft transfers torque from the engine to the wheels and is responsible for the smooth running of the vehicle. Its design had to compensate for differences in length and angle. It must also ensure perfect synchronization between its joints. The drive shaft should be made of high-grade materials to achieve the best balance of stiffness and elasticity. There are three main types of drive shafts. These include: end yokes, tube yokes and tapered shafts.
air-compressor

tube yoke

Tube yokes are shaft assemblies that use metallic materials as the main structural component. The yoke includes a uniform, substantially uniform wall thickness, a first end and an axially extending second end. The first diameter of the drive shaft is greater than the second diameter, and the yoke further includes a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the vehicle.
By retrofitting the driveshaft tube end into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capability of the tube yoke. The yoke is usually made of aluminum alloy or metal material. It is also used to connect the drive shaft to the yoke. Various designs are possible.
The QU40866 tube yoke is used with an external snap ring type universal joint. It has a cup diameter of 1-3/16″ and an overall width of 4½”. U-bolt kits are another option. It has threaded legs and locks to help secure the yoke to the drive shaft. Some performance cars and off-road vehicles use U-bolts. Yokes must be machined to accept U-bolts, and U-bolt kits are often the preferred accessory.
The end yoke is the mechanical part that connects the drive shaft to the stub shaft. These yokes are usually designed for specific drivetrain components and can be customized to your needs. Pat’s drivetrain offers OEM replacement and custom flanged yokes.
If your tractor uses PTO components, the cross and bearing kit is the perfect tool to make the connection. Additionally, cross and bearing kits help you match the correct yoke to the shaft. When choosing a yoke, be sure to measure the outside diameter of the U-joint cap and the inside diameter of the yoke ears. After taking the measurements, consult the cross and bearing identification drawings to make sure they match.
While tube yokes are usually easy to replace, the best results come from a qualified machine shop. Dedicated driveshaft specialists can assemble and balance finished driveshafts. If you are unsure of a particular aspect, please refer to the TM3000 Driveshaft and Cardan Joint Service Manual for more information. You can also consult an excerpt from the TSB3510 manual for information on angle, vibration and runout.
The sliding fork is another important part of the drive shaft. It can bend over rough terrain, allowing the U-joint to keep spinning in tougher conditions. If the slip yoke fails, you will not be able to drive and will clang. You need to replace it as soon as possible to avoid any dangerous driving conditions. So if you notice any dings, be sure to check the yoke.
If you detect any vibrations, the drivetrain may need adjustment. It’s a simple process. First, rotate the driveshaft until you find the correct alignment between the tube yoke and the sliding yoke of the rear differential. If there is no noticeable vibration, you can wait for a while to resolve the problem. Keep in mind that it may be convenient to postpone repairs temporarily, but it may cause bigger problems later.
air-compressor

end yoke

If your driveshaft requires a new end yoke, CZPT has several drivetrain options. Our automotive end yoke inventory includes keyed and non-keyed options. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are often used to join two heads back to back. These are convenient options to help keep drivetrain components in place when driving over rough terrain, and are generally compatible with a variety of models. U-bolts require a specially machined yoke to accept them, so be sure to order the correct size.
The sliding fork helps transfer power from the transfer case to the driveshaft. They slide in and out of the transfer case, allowing the u-joint to rotate. Sliding yokes or “slips” can be purchased separately. Whether you need a new one or just a few components to upgrade your driveshaft, 4 CZPT Parts will have the parts you need to repair your vehicle.
The end yoke is a necessary part of the drive shaft. It connects the drive train and the mating flange. They are also used in auxiliary power equipment. CZPT’s drivetrains are stocked with a variety of flanged yokes for OEM applications and custom builds. You can also find flanged yokes for constant velocity joints in our extensive inventory. If you don’t want to modify your existing drivetrain, we can even make a custom yoke for you.

China QJ904.31.114 Inner Gear For Foton Lovol agricultural machinery & equipment Farm Tractors     custom drive shaft	China QJ904.31.114 Inner Gear For Foton Lovol agricultural machinery & equipment Farm Tractors     custom drive shaft
editor by czh 2023-03-06

China OEM Metallurgical Machinery High Speed Spur Gearbox Gear Shaft custom drive shaft

Product Description

Our Function
1) In-home capability: OEM provider as per customers’ requests, with in-house tooling design and style & fabricating

2) Expert engineering capability: On product design and style, optimization and performance evaluation

3) Manufacturing ability variety: DIN 3960 course 8 to 4, ISO 1328 course 8 to 4, AGMA 2000 course 10-15, JIS 1702-1703 class to 2, and so forth.

4) Packing: Tailor-made packaging method according to customer’s need

5) Just-in-time supply functionality

Major Competitive Rewards
1. Professional bull helical gear maker

2. Experience in Cooperate with Fortune 500 Organizations

three. Professional Engineering Functionality

four. Stable Good quality

5. Affordable Price

six. Tiny Orders Accepted

seven. Constant Enhancements

8. Higher Merchandise Overall performance

9. Prompt Shipping

ten. Expert Service

Our Main Merchandise
one. Spur Gear
two. Planetary Equipment
three. Metallic Gears
4. Gear Wheel
five. Ring Equipment
six. Equipment Shaft
seven. Helical Gear
eight. Pinion Gear
9. Spline Shaft

Business Profile
1.21 a long time encounter in higher top quality Equipment Shaft’s manufacturing, product sales and R&D

two. Our merchandise, the Equipment Shaft is certificated by ISO9001: 2008 and ISO14001: 2004.

3. NYY has much more than 50 patents in high top quality Gear Shaft producing and R&D fieles.

four. NYY goods are exported to America, Europe.

Q&A:
Provider and quality info:

one. Q: Can you make as per personalized drawing?
A: Yes, we can do that.

2. Q: If I will not have drawing, what can you do for me?
A: If you don’t have drawing, but have the sample component, you could ship us. We will check out if we can make it or not.

three. Q: How do you make certain the high quality of your products?
A: We will do a collection of inspections, these kinds of as:
A. Uncooked content inspection (contains chemical and actual physical mechanical characters inspection),
B. Machining process dimensional inspection (includes: 1st pc inspection, self inspection, last inspection),
C. Heat therapy end result inspection,
D. Equipment tooth inspection (to know the accomplished gear quality amount),
E. Magnetic particle inspection (to know if there’s any cracks in the equipment).
We will provide you the stories 1 set for every batch/ cargo.   

 

Capabilities of Gears/ Splines    
Item Internal Gears and Internal Splines External Gears and External Splines
Milled Formed Ground Hobbed Milled Floor
Max O.D. 2500 mm
Min I.D.(mm) 30 320 20
Max Experience Width(mm) 500 1480
Max DP 1 .five 1 .five
Max Module(mm) 26 forty five 26 forty five
AGMA/ DIN Level DIN Course eight DIN Course four DIN Course 8 DIN Course four
Tooth Finish Ra 3.2 Ra .six Ra 3.two Ra .six
Max Helix Angle ±22.5° ±45° 

 
Personalized Created Parts Examples:

US $1,380
/ Piece
|
5 Pieces

(Min. Order)

###

Material: 17CrNiMo6
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Axis Shape: Straight Shaft
Shaft Shape: Gear Shaft
Appearance Shape: Round

###

Customization:

###

Capabilities of Gears/ Splines    
Item Internal Gears and Internal Splines External Gears and External Splines
Milled Shaped Ground Hobbed Milled Ground
Max O.D. 2500 mm
Min I.D.(mm) 30 320 20
Max Face Width(mm) 500 1480
Max DP 1 0.5 1 0.5
Max Module(mm) 26 45 26 45
AGMA/ DIN Level DIN Class 8 DIN Class 4 DIN Class 8 DIN Class 4
Tooth Finish Ra 3.2 Ra 0.6 Ra 3.2 Ra 0.6
Max Helix Angle ±22.5° ±45° 
US $1,380
/ Piece
|
5 Pieces

(Min. Order)

###

Material: 17CrNiMo6
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Axis Shape: Straight Shaft
Shaft Shape: Gear Shaft
Appearance Shape: Round

###

Customization:

###

Capabilities of Gears/ Splines    
Item Internal Gears and Internal Splines External Gears and External Splines
Milled Shaped Ground Hobbed Milled Ground
Max O.D. 2500 mm
Min I.D.(mm) 30 320 20
Max Face Width(mm) 500 1480
Max DP 1 0.5 1 0.5
Max Module(mm) 26 45 26 45
AGMA/ DIN Level DIN Class 8 DIN Class 4 DIN Class 8 DIN Class 4
Tooth Finish Ra 3.2 Ra 0.6 Ra 3.2 Ra 0.6
Max Helix Angle ±22.5° ±45° 

Why Checking the Drive Shaft is Important

If you hear clicking noises while driving, your driveshaft may need repair. An experienced mechanic can tell if the noise is coming from one side or both sides. This problem is usually related to the torque converter. Read on to learn why it’s so important to have your driveshaft inspected by an auto mechanic. Here are some symptoms to look for. Clicking noises can be caused by many different things. You should first check if the noise is coming from the front or the rear of the vehicle.
air-compressor

hollow drive shaft

Hollow driveshafts have many benefits. They are light and reduce the overall weight of the vehicle. The largest manufacturer of these components in the world is CZPT. They also offer lightweight solutions for various applications, such as high-performance axles. CZPT driveshafts are manufactured using state-of-the-art technology. They offer excellent quality at competitive prices.
The inner diameter of the hollow shaft reduces the magnitude of the internal forces, thereby reducing the amount of torque transmitted. Unlike solid shafts, hollow shafts are getting stronger. The material inside the hollow shaft is slightly lighter, which further reduces its weight and overall torque. However, this also increases its drag at high speeds. This means that in many applications hollow driveshafts are not as efficient as solid driveshafts.
A conventional hollow drive shaft consists of a first rod 14 and a second rod 14 on both sides. The first rod is connected with the second rod, and the second rod extends in the rotation direction. The two rods are then friction welded to the central area of ​​the hollow shaft. The frictional heat generated during the relative rotation helps to connect the two parts. Hollow drive shafts can be used in internal combustion engines and environmentally-friendly vehicles.
The main advantage of a hollow driveshaft is weight reduction. The splines of the hollow drive shaft can be designed to be smaller than the outside diameter of the hollow shaft, which can significantly reduce weight. Hollow shafts are also less likely to jam compared to solid shafts. Hollow driveshafts are expected to eventually occupy the world market for automotive driveshafts. Its advantages include fuel efficiency and greater flexibility compared to solid prop shafts.

Cardan shaft

Cardan shafts are a popular choice in industrial machinery. They are used to transmit power from one machine to another and are available in a variety of sizes and shapes. They are available in a variety of materials, including steel, copper, and aluminum. If you plan to install one of these shafts, it is important to know the different types of Cardan shafts available. To find the best option, browse the catalog.
Telescopic or “Cardan” prop shafts, also known as U-joints, are ideal for efficient torque transfer between the drive and output system. They are efficient, lightweight, and energy-efficient. They employ advanced methods, including finite element modeling (FEM), to ensure maximum performance, weight, and efficiency. Additionally, the Cardan shaft has an adjustable length for easy repositioning.
Another popular choice for driveshafts is the Cardan shaft, also known as a driveshaft. The purpose of the driveshaft is to transfer torque from the engine to the wheels. They are typically used in high-performance car engines. Some types are made of brass, iron, or steel and have unique surface designs. Cardan shafts are available in inclined and parallel configurations.
Single Cardan shafts are a common replacement for standard Cardan shafts, but if you are looking for dual Cardan shafts for your vehicle, you will want to choose the 1310 series. This type is great for lifted jeeps and requires a CV-compatible transfer case. Some even require axle spacers. The dual Cardan shafts are also designed for lifts, which means it’s a good choice for raising and lowering jeeps.
air-compressor

universal joint

Cardan joints are a good choice for drive shafts when operating at a constant speed. Their design allows a constant angular velocity ratio between the input and output shafts. Depending on the application, the recommended speed limit may vary depending on the operating angle, transmission power, and application. These recommendations must be based on pressure. The maximum permissible speed of the drive shaft is determined by determining the angular acceleration.
Because gimbal joints don’t require grease, they can last a long time but eventually fail. If they are poorly lubricated or dry, they can cause metal-to-metal contact. The same is true for U-joints that do not have oil filling capability. While they have a long lifespan, it can be difficult to spot warning signs that could indicate impending joint failure. To avoid this, check the drive shaft regularly.
U-joints should not exceed seventy percent of their lateral critical velocity. However, if this speed is exceeded, the part will experience unacceptable vibration, reducing its useful life. To determine the best U-joint for your application, please contact your universal joint supplier. Typically, lower speeds do not require balancing. In these cases, you should consider using a larger pitch diameter to reduce axial force.
To minimize the angular velocity and torque of the output shaft, the two joints must be in phase. Therefore, the output shaft angular displacement does not completely follow the input shaft. Instead, it will lead or lag. Figure 3 illustrates the angular velocity variation and peak displacement lead of the gimbal. The ratios are shown below. The correct torque for this application is 1360 in-Ibs.

Refurbished drive shaft

Refurbished driveshafts are a good choice for a number of reasons. They are cheaper than brand new alternatives and generally just as reliable. Driveshafts are essential to the function of any car, truck, or bus. These parts are made of hollow metal tubes. While this helps reduce weight and expense, it is vulnerable to external influences. If this happens, it may crack or bend. If the shaft suffers this type of damage, it can cause serious damage to the transmission.
A car’s driveshaft is a critical component that transmits torque from the engine to the wheels. A1 Drive Shaft is a global supplier of automotive driveshafts and related components. Their factory has the capability to refurbish and repair almost any make or model of driveshafts. Refurbished driveshafts are available for every make and model of vehicle. They can be found on the market for a variety of vehicles, including passenger cars, trucks, vans, and SUVs.
Unusual noises indicate that your driveshaft needs to be replaced. Worn U-joints and bushings can cause excessive vibration. These components cause wear on other parts of the drivetrain. If you notice any of these symptoms, please take your vehicle to the AAMCO Bay Area Center for a thorough inspection. If you suspect damage to the driveshaft, don’t wait another minute – it can be very dangerous.
air-compressor

The cost of replacing the drive shaft

The cost of replacing a driveshaft varies, but on average, this repair costs between $200 and $1,500. While this price may vary by vehicle, the cost of parts and labor is generally equal. If you do the repair yourself, you should know how much the parts and labor will cost before you start work. Some parts can be more expensive than others, so it’s a good idea to compare the cost of several locations before deciding where to go.
If you notice any of these symptoms, you should seek a repair shop immediately. If you are still not sure if the driveshaft is damaged, do not drive the car any distance until it is repaired. Symptoms to look for include lack of power, difficulty moving the car, squeaking, clanking, or vibrating when the vehicle is moving.
Parts used in drive shafts include center support bearings, slip joints, and U-joints. The price of the driveshaft varies by vehicle and may vary by model of the same year. Also, different types of driveshafts require different repair methods and are much more expensive. Overall, though, a driveshaft replacement costs between $300 and $1,300. The process may take about an hour, depending on the vehicle model.
Several factors can lead to the need to replace the drive shaft, including bearing corrosion, damaged seals, or other components. In some cases, the U-joint indicates that the drive shaft needs to be replaced. Even if the bearings and u-joints are in good condition, they will eventually break and require the replacement of the drive shaft. However, these parts are not cheap, and if a damaged driveshaft is a symptom of a bigger problem, you should take the time to replace the shaft.

China OEM Metallurgical Machinery High Speed Spur Gearbox Gear Shaft     custom drive shaft	China OEM Metallurgical Machinery High Speed Spur Gearbox Gear Shaft     custom drive shaft
editor by czh 2023-01-07

Spur made in China – replacement parts – in Goiania Brazil Gear Bevel Spur Gear for Gearboxes Farm Machinery Parts with ce certificate top quality low price

Spur  made in China - replacement parts -  in Goiania Brazil  Gear Bevel Spur Gear for Gearboxes Farm Machinery Parts with ce certificate top quality low price

Spur  made in China - replacement parts -  in Goiania Brazil  Gear Bevel Spur Gear for Gearboxes Farm Machinery Parts with ce certificate top quality low price

We – EPG Team the bigge EPT Chain and agricultural gearbox factory in China with 5 distinct branches. For more particulars: Cell/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778 0571 88828

                     
  
 Gear technological data

Product Type M0.5~M12, Z8~80. normal gear, or in accordance customer drawing to make.
Material: Carbon Steel, Brass, Aluminium, Stainless steel, Plastic, POM, Delrin, Titanium Alloy etc.
Process method CNC Turning, milling ,drilling, grinding etc.
Surface finish: Chrome plating, Anodization, Powder coating, blackening, Sand blasting, Brushing & ploshing,Electrophoresis etc.
OEM & ODM Service Obtainable
Design Software Pro/E, Auto CAD, Solid Works 
Trade Terms: FOB,,CIF,EXW
Payment Terms: T/T, L/C, 
Packing:  Foam, Carton, Standard Wooden boxes
Capability 8,000~1,5000 pcs per month
Delivery  twenty-30 days after receiving PO
Apps Automotive Parts,hydraulics, compressors,Industrial equipments, transmission parts, etc.
Our services: CNC Machining, Milling, Stamping, Sheet metal fabricating, and Die-Casting

Merchandise show

Spur equipment
                                                           

Hardened teeth of substantial frequency

Hobbing equipment

FAQ
 

Q: Are you trading organization or manufacturer ?

A: We are factory.

Q: How extended is your shipping time?

A: Typically it is 5-10 days if the merchandise are in inventory. or it is fifteen-20 times if the products are not in inventory, it is according to amount.

Q: Do you give samples ? is it totally free or further ?

A: Of course, we could offer the sample for free of charge charge but do not spend the co EPT of freight.

Q: What is your terms of payment ?

A: Payment thirty%TT in progress. 70% T/T just before shippment 
 

The use of unique products manufacturer’s (OEM) portion numbers or emblems , e.g. CASE® and John Deere® are for reference purposes only and for indicating solution use and compatibility. Our business and the detailed substitution components contained herein are not sponsored, accepted, or created by the OEM.

Spur  made in China - replacement parts -  in Goiania Brazil  Gear Bevel Spur Gear for Gearboxes Farm Machinery Parts with ce certificate top quality low price

Spur  made in China - replacement parts -  in Goiania Brazil  Gear Bevel Spur Gear for Gearboxes Farm Machinery Parts with ce certificate top quality low price

Spur  made in China - replacement parts -  in Goiania Brazil  Gear Bevel Spur Gear for Gearboxes Farm Machinery Parts with ce certificate top quality low price

S China best factory series worm gear right angle gearbox for agricultural machinery

S  China best factory series worm gear right angle gearbox for agricultural machinery

We will supply best services and large good quality products with all sincerity. a specialized supplier of a full range of chains, sprockets, gears, gear racks, V-belts, couplings and reducers, pto shaft, agricultural gearboxes….

Overview

Fast Information

Applicable Industries:

Accommodations, Garment Shops, Developing Substance Shops, Producing Plant, Equipment Fix Shops, Foodstuff & Beverage Manufacturing unit, Farms, Strength & Mining, Design works

Area of Origin:Zhejiang, China
Brand Identify:

OEM

Gearing Arrangement:

Worm

Output Torque:

a hundred~62800N.m

Enter Velocity:

1450/960rpm

Output Velocity:

14-280rpm

Ratio:

7.five~100

Certification:

ISO9001-2008

Mount Place:

Foot Mounted

Bearing:

LYC,ZWZ

Provide Ability

Provide Capability:
3000 Device/Models for every Month

Packaging & Delivery

Packaging Information
Picket boxes , Cantons packed in 1 pallet
Port
Ningbo Port, Shanghai Port

On the internet Customization

S seriesr right angle gearbox helical worm gear reducer gearbox equivalent s series gear motor worm bucket elevator

Solution Description

 S series is a single sort of Helical worm gearbox ,created as Modularization and high-stainless solid iron circumstance . It is mixture of helical equipment and worm equipment ,which with increased effectiveness and energy than straightforward aluminum worm gearbox . Due to their outstanding efficiency, these drives can be employed in each industrial sector and tailor-made to individual torque and velocity needs. The equipment ratios afforded by the helical-worm gear stage and the lower noise stages for the duration of operation make these gearmotors ideal minimal-price options for basic applications

Specifications:

1) Output speed: .6~1,028r/min

2) Output torque: up to 4530N.m

3) Motor electricity: .twelve~22kW

4) Mounted type: foot-mounted and flange-mounted mounting

Item Name

Helical worm equipment motor S series gear reducer reduction gearbox

Gear Content

20CrMnTi 

Situation Materials

HT250

Shaft Material 

20CrMnTi

Gear Processing

Grinding end by HOFLER Grinding Devices

Color 

Custom-made

Sounds Test

Bellow 65dB

Machining precision of gears

precise grinding, six Quality

Heat treatment

tempering, cementiting, quenching,etc.

Manufacturer of bearings

 C&U ,HRB,LYC,ZWZ.SKF,NSK

Brand of oil seal

NAK or other model

Noise (MAX)

65~70dB

Temp. increase (MAX)

40 C

Temp. rise (Oil)(MAX)

50 C

 

Company Data

 

Certifications

 

Our Services

 

Packaging & Shipping

 

Connected Merchandise

 

FAQ

: Are you buying and selling company or manufacturer ?

A: We are manufacturing unit.

Q: How lengthy is your supply time?

A: Typically it is five-ten times if the merchandise are in inventory. or it is fifteen-twenty days if the goods are not in inventory, it is according to quantity.

Q: Do you offer samples ? is it cost-free or added ?

A: Of course, we could supply the sample for totally free charge but do not pay the price of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,stability before shippment.
If you have another issue, pls come to feel cost-free to make contact with us as below:

Contact us